

Data-Driven Learning for Robots

Thommen George Karimpanal under the supervision of Prof. David Braun

Engineering Product Development

Singapore University of Technology and Design

Singapore

thommen_george@mymail.sutd.edu.sg

Abstract— This project aims to implement a model learning

algorithm using data gathered in real time from a physical

system. The learning algorithm will be used to learn a model of

the system’s dynamics and controller under changing

environmental circumstances. The distinguishing feature of this

learning algorithm is that it will aim to use locally updating

model learning techniques as opposed to globally updating ones.

The reason for this is so that the learning is done online, as and

when the data is received, and learning local models would help

better capture the transient dynamics and non-linearities without

overfitting or underfitting. The objective used to evaluate the

learning algorithm would be to have the robot drive in straight

line irrespective of changing ground surfaces and asymmetric

elements added to the system. The simulation and testing of this

model learning algorithm would be performed on the EvoBot

platform developed in SUTD’s Motion, Energy and Control

Laboratory.

Keywords—Model Learning; Dynamics; Online learning;

locally weighted regression

I. INTRODUCTION

Modeling of physical systems has always been a challenge,

yet animals and other organisms in nature are able to

accurately and efficiently learn the dynamics of their bodies

within a certain span of time. This is apparent if one observes

the stark difference in the manner in which a limb or any other

body part is controlled in an infant and in an adult. Organisms

use the learnt internal models of their bodies to control and

navigate their bodies in the world around them, to react to

environmental disturbances and are also able to adapt to

changes in their own bodies or in the environment they are in.
In the area of robotics, mathematical models are used to

predict the behaviour of a system, in order to control it. These
models typically aim to predict the kinematics or dynamics of
the physical system through differential equations or
probabilistic methods. As the tasks assigned to robots start to
involve more and more stochastically varying environmental
components, arriving at a good dynamic model of the system
can be very challenging. The difficulty could be attributed to
several factors, including the sheer complexity of the robot
linkages, as well as varying environmental conditions. For
example, a good robot model need not be valid when say, the
robot is required to hold some additional mass (for say,
foraging applications) or when the surface roughness of the

ground changes considerably (for mobile robots). Apart from
this, owing to random errors and environment noise, a
conventional mathematical model of a system is never correct
beyond a certain limit. Parameters in the models are usually
corrected and re-corrected till that limit is brought to within
acceptable bounds. Even after the process of parameter fitting,
the model only has a limited use. For example, once the system
is taken out of the environment for which it was modeled, the
model of the system‟s behaviour in this new environment may
need to be completely reformulated. This greatly limits the
usability of the system itself, as it confines the system to a
certain environment, if not, to environments very similar to the
one it was modeled in. For these reasons, it is essential to
determine a more robust way of describing the rules that
govern a system‟s dynamics. This project will conduct
exploratory research into alternative online model learning
algorithms to try and learn the dynamics of the robot. Several
existing algorithms to this end may also be tested in the
process.

II. LITERATURE REVIEW

Learning patterns from data in order to formulate a useful

model from it is a field that is well established and has been

extensively studied. The learning methods are broadly

classified into supervised and unsupervised methods based on

whether the learning is performed on labeled or unlabeled

data. In supervised learning, one is presented with a set of

input data and a corresponding set of desired output data.

Although the approaches may vary, all supervised learning

algorithms are focused on finding a mapping function between

these two sets of data. Some of the very popular and

extensively used learning algorithms are artificial neural

networks, support vector machines, decision trees, etc.,

Artificial neural networks encompasses a number of the

popular techniques that exist today for supervised learning.

Some of these are multi-layer perceptrons [3,4], radial basis

function networks and self organizing maps [6]. Multi-layer

perceptrons use a network of nodes called neurons, which are

activated as per some activation function, usually a sigmoid or

a hyperbolic tangent function, the forms of which are shown

below.

𝑦𝑖 = 1/(1 + 𝑒−𝑣𝑖) …(1)

𝑦𝑖 = tanh⁡(𝑣𝑖) …(2)

Where yi is the output and vi is the input. Typically, the nodes

are present in two layers, although more layers can also be

used. These nodes are connected to each other by weights,

which are parameters that are tuned in order to approximate

the function that maps the inputs to the outputs. The learning

process consists of computing the error between the desired

and real output of each neuron and then updating the weights

accordingly using a method called backpropagation [4].

 The radial basis function networks is a simplification over

the multi layer perceptrons, as it uses only a single layer, and

it uses a radial basis function as its activation function. A

radial basis function is one whose output depends on the

distance r between its center c, and the input value x. A

standard radial basis function [1,2] is shown below:

∅ 𝑟 =
𝑒−𝑟2/2𝜎2

 2𝜋𝜎2
 …(3)

Where 𝜎 is the variance of a gaussian function. The method of

performing regression with radial basis function networks is

similar to that in multi-layer perceptrons, in that the output of

all the functions are weighted and summed together to obtain

the global output. The weights are updated based on the

network error, as in multi-layer perceptron, but using methods

such as gradient descent.

 Self organizing maps is another type of artificial neural

network. However, it is trained using unsupervised learning in

order to classify the inputs according to their similarities. A

useful feature of this method is that it preserves the

topological features of the input space.

 One of the most popular methods for learning is one called

support vector machines [7]. In this method, hyperplanes, or

high dimensional planes of separation between different object

classes are created in order to perform tasks such as

classification and regression. The hyperplanes are chosen in

such a way that the margin of separation between classes is

maximized.

 All these methods have been used to learn the kinematic

and dynamic models of various physical systems. However, in

all these methods, during the learning process, the weights or

other parameters are updates globally. The distinguishing

feature of this project is that it attempts to learn models by

performing the parameter update locally. This method of local

update may converge more quickly as the error will need to be

minimized only locally, rather than globally. However, it may

suffer from problems such as overfitting as some of the noise

and other disturbances may be learnt, instead of being ignored

during the model update in each iteration. The next section

will discuss some existing as well as possible directions for

advancing locally updating model learning techniques.

III. THEORY

Locally updating modeling techniques are generally less

extensively studied as compared to the globally updating

techniques as mentioned in the previous section. In globally

updating learning approaches, a new training point affects

many parameters that are both near as well as far away from

the query point. Also, the answer to a query depends on many

parameters. Locally updating methods attempt to fit the

training data only in a region around the location of the query

point. Apart from local learning, algorithms may also use local

selection, in which a distance function is used to determine

which points are relevant to the query. Generally, all of the

global learning techniques can be converted to local ones by

making use of a distance function which emphasizes points

close to a query more than points away from it.

 Some examples of local models include nearest neighbor,

weighted average and locally weighted regression. Locally

weighted regression methods use Gaussian weights, but with

the weights approximated by the least squares method. The

main difference between radial basis function networks and

locally weighted regression methods lies in the introduction of

a linear model associated to each radial basis function and

used to perform least squares regression. Each radial basis

function defines a region of validity for the corresponding

linear model. It globally approximates non-linear functions by

combining local linear models.

 Compared to artificial neural networks or radial basis

function networks, locally weighted regression benefits from

the power of linear estimation methods. But it needs to retain

all training data to perform the least squares approximation,

which may be infeasible for large solution spaces given

memory limitations.

 Another variation of the approach mentioned above is the

locally weighted projection regression method, in which the

input dimensionality is reduced using partial least squares. In

this approach, a projection is made on the input vector to

model high dimensional functions only in their most relevant

directions.

 There are several improved versions possible for the above

methods, such as increasing the number of regions into which

the input space is divided, especially in areas where there is a

sudden variation of output.

 The project will aim to first test out the existing versions of

the local learning and perhaps include additional

improvements to it. In order to test out the learning algorithms

mentioned above, actual robot data will be used to train the

learning algorithm. Real time implementation of the locally

weighted regression algorithm is described in this work.

IV. PLATFORM AND CONVENTIONAL DYNAMIC MODEL

The EvoBot is a differentially driven robot, with motors on

either sides of its body. The wheels are coupled to the motors

through a gearbox with a gear reduction ratio of 1:100. The

speed of each motor is controlled by a pulse width modulated

voltage signal. The robot's speed and heading can thus be

controlled by changing the duty cycles associated with the two

PWM voltages. The heading only depends on the difference in

the speeds of the two motors, and the distance between the

wheels.

The robot is modeled using the bond graph technique [8]. In

the model, the robot is treated as two point masses connected

together, with the two masses concentrated on either side of

the robot as shown in figure 1. The two halves are treated

independently and the dynamics of each side is modeled.

These sub-models are later combined to give the complete

model of the EvoBot platform.

Figure 1: The EvoBot platform

Figure 2: Model of one side of the robot

Figure 2 shows the bond graph model of one of the halves of

the EvoBot platform. In the model, a pulse width modulated

voltage source in series with an internal resistance drives the

two motors. The motor is modeled as a gyrator element with

its inductive behavior neglected. The motors in the robot also

contain a gearbox which provides a speed reduction of 1:100,

which is also modeled. The rotational motion of the motor is

converted to translational motion using a transformer element

whose modulus is equal to the radius of the wheel. Each motor

is assumed to be attached to half the total mass of the robot.

The motion of both „halves‟ of the robot are coupled together

to model the rotational motion of the robot. The model does

not account for the electrical dynamics of the system, as we

are primarily concerned with the mechanical dynamics. The

equations derived from the bond graph are shown below:

Where:

𝑣1- Velocity of a point on the rim of the wheel/velocity of one

side of the robot

𝑣2- Velocity of a point on the rim of the other wheel/velocity

of the other side of the robot

𝜃– Heading/ orientation

𝑅𝑏 – Internal resistance of the battery (0.5Ω)

K – K value of the motors (0.005V/rad/s)

G – Gear Ratio of motors (1/100)

r – Radius of the wheels (0.02m)

l – equivalent width of the robot (0.095)

m – equivalent mass of the robot (0.26kg)

𝑉- Battery Voltage (3.8V)

𝑢1- PWM ratio to first motor

𝑢2- PWM ratio to second motor

𝑅𝑓- Translational Frictional Damping Constant (21Ns/m)

The states in the above linear model of the system are the

wheel velocities and the heading/orientation. If the required

output is the position in the x and y directions, these can easily

be derived by performing a non linear transformation on the

states 𝑣1 , 𝑣2and 𝜃 as shown below:

Where x and y are the co-ordinate positions of the robot.

This model approximates the behaviour of the robot to a good

degree of accuracy on a test platform, in which the surface

under question is wooden. However, when the surface is

changed, the model may not hold true anymore. The aim of

this project is to have the EvoBot learn the model from the

data it collects, irrespective of the environmental parameters.

This way of learning is adaptive in nature, and is expected to

give the system a certain degree of robustness. The learning is

tested by evaluating the performance of the robot for a simple

task such as driving in a straight line. Currently, minor

fabrication defects and other factors cause some asymmetry in

the robot. The model learning algorithm should be able to

adapt to these intricacies and make the robot perform its given

task (moving straight) irrespective of the asymmetry. In order

to truly evaluate the adaptive ability of the algorithm, artificial

asymmetries are introduced by covering one side of the

robot‟s tracks with smooth tape. This causes the robot to drift

towards one direction by default. The learning algorithm

should be able to learn these patterns and apply the

corresponding correction.

MODEL LEARNING AND RESULTS

Post processed learning:

In order to test out the working of the locally weighted

regression algorithm, some test data from the EvoBot was

collected and presented as training input. The data consisted of

the distance covered by the robot and the time in milliseconds.

The test corresponding to this data was such that the robot was

made to move in the forward direction in discontinuous bursts,

with the robot moving at full speed and then stopping

periodically. Figure 3 shows the results in which the output of

a learnt model is compared with that of the actual robot data.

As seen from the figure, the model seems to learn the data

very well, perhaps even leading to a problem of overfitting the

data. In the next section, the learning model is applied to a

more realistic task of having the robot learn its own controller

despite inherent asymmetries artificially imposed on it.

Figure 3. Figure showing the comparison of robot distance

data with data from the learnt model

Real-time learning:

In order to test out the real time learning ability of the

algorithm, one side of the robot was taped as mentioned in the

previous sections and as shown in figure 4. The learning was

tested with different wheels on either side as well, as shown in

figure 5.

Figure 4: One side of the robot taped to introduce asymmetry

Figure 5: Different wheels used on either side of the robot to

introduce asymmetries

The robot was then trained for the ability to maintain a given

heading value irrespective of its internal asymmetries. The

natural tendency of the robot is to drift towards one side, but

the learning objective is to learn the controller so that it can

correct itself to travel at the required heading.

 The formulation of the problem was as follows: Since the

drift or the angular velocity of the robot is dependent on the

difference in the PWM duty cycles between the two sides, the

left and right PWM duty cycles were parameterized as shown

below:

𝑢𝑙𝑒𝑓𝑡 = 𝑢𝑏𝑎𝑠𝑒 + 𝛿𝑢

…(4)

𝑢𝑟𝑖𝑔𝑕𝑡 = 𝑢𝑏𝑎𝑠𝑒 − 𝛿𝑢

In this way, the number of control parameters are reduced

from two to just one parameter, 𝛿𝑢. This was done to make it

convenient for the learning algorithm, as now, the regression

problem is reduced to a 1 dimensional one.

 There were two modes of training developed; one in which

the robot scanned for errors in the heading and corrected itself

by training through a number of different predetermined

values of δu for a predetermined length of time and storing the

corresponding values of drift and 𝛿𝑢 and performing LWR on

this data, and the second mode in which the robot corrected

itself through gradient descent, but in the process, collected

drift and 𝛿𝑢 data in order to learn a good model of the

controller through LWR. The time for which a particular

action was executed in this mode was also predetermined. For

both modes, a system was set up for connecting the robot to a

central computer through Bluetooth and for recording the

robot data into a csv file. The csv file is then read to retrieve

the data, and LWR is performed on this data.

 Each of the above mentioned approaches have their own

merits and demerits. The merits of the first approach is that the

solution space is explored quite well, but it suffers from the

disadvantages that the exploration of the solution space is pre-

defined, and that the learning is not real time in nature, but is

more like batch learning, as the robot starts learning only after

it has run through its training routine.

 In the second approach, the advantage is that the learning

through gradient descent is truly real time, but the exploration

of the solution space depends on the magnitude of initial error

experienced just before learning. Since gradient descent

converges relatively quickly, the number of data points

explored is limited. In summary, it results in the robot learning

a limited solution space, but in real time. One way in which to

improve approach 2 is to insert previously collected data into

the system just before it starts updating it. This could be

thought of as a way to incorporate memory into the robots,

with the memory being continuously updated with the learning

algorithm.

 Overall, the algorithm worked well for real time learning,

and was able to generate a model that fit the data well. A

sample output of the algorithm is shown in figure 5. It can be

seen that the non-linear aspects of the system are well

captured by the learnt model.

Figure 5: A plot of angular drift vs the parameter δu on data

collected through approach 1.

Figure 6: Paths of the robot shown before and after the

learning algorithm

Problems with LWR:

Although LWR was quite efficient at learning models in real

time, its performance is highly dependent on the Gaussian

kernel chosen. If the Gaussian kernel has a very small standard

deviation, the algorithm fails to update certain data points that

are far from the query point. On the other hand, if the kernel

has a high variance, the model update is smooth, but less

accurate. Since increasing the variance of the kernel function

unfavorably affects the results, this option is not preferred. In

order to handle such cases even when the kernel has a low

variance, the final learnt model was passed through a layer of

linear interpolation in order for the model to be able to return

reasonable values at all points in the data range. Alternatively,

a non-gaussian kernel such as a sigmoid or hyperbolic tangent

function could also be chosen, although its effects have not

been studied in this project.

CONCLUSION

In this work, a locally weighted approach to regression is

studied and implemented. The weights used are Gaussians

whose variances depend on the distance of a particular point to

a query point. Implementation was performed on the EvoBot

platform, in order to perform the particular task of moving in a

specified heading direction by learning the model of its

controller. Internal asymmetries were added in order to make

the learning task more challenging. The formulation of the

problem was described in detail. The post-processed as well as

real time approaches to the learning algorithm were described

in detail and the corresponding results were presented and

discussed. It was found that the learnt model of the system

was adaptive in nature and performed significantly better than

the conventional model of the system, which was also

described. Lastly, some limitations of the LWR method were

also described and potential solutions were proposed.

REFERENCES

[1] Olivier Sigaud , Camille Salaün, Vincent Padois, “On-line regression
algorithms for leanring the mechanical models of robots: A survey”, in
Robotics and Autonomous Systems, Volume 59, Issue 12, (2011) 1115–
1129

[2] Christopher G. Atkeson, Andrew W. Moore and Stefan Schaal, “Locally
weighted learning” in Artificial Intelligence Review, Issue 11, pp. 11-73,
1997

[3] S. Haykin, “Neural Networks and Learning Machines”, Prentice Hall,
2009

[4] F. Rosenblatt, The perceptron: a probabilistic model for information

storage and organization in the brain, Psychological Review 65 (1958)
386–408.

[5] D. Nguyen-Tuong, J. Peters, Model learning for robot control: a survey,

Cognitive Processing (2011) 1–22.

[6] T. Kohonen, Self-Organizing Maps, Springer, Berlin, 2001

[7] Nello Cristianini and John Shawe-Taylor, “An introduction to Support

Vector Machines and Other Kernel Based Learning Methods”,
Cambridge University Press, 2000. ISBN 0-521-78019-5

[8] Karnopp, Dean C., Margolis, Donald L., Rosenberg, Ronald C.,
1990: “System dynamics: a unified approach”, Wiley, ISBN 0-471-
62171-4.

http://en.wikipedia.org/wiki/Special:BookSources/0471621714
http://en.wikipedia.org/wiki/Special:BookSources/0471621714

