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Abstract— This project aims to implement a model learning 

algorithm using data gathered in real time from a physical 

system. The learning algorithm will be used to learn a model of 

the system’s dynamics and controller under changing 

environmental circumstances. The distinguishing feature of this 

learning algorithm is that it will aim to use locally updating 

model learning techniques as opposed to globally updating ones. 

The reason for this is so that the learning is done online, as and 

when the data is received, and learning local models would help 

better capture the transient dynamics and non-linearities without 

overfitting or underfitting. The objective used to evaluate the 

learning algorithm would be to have the robot drive in straight 

line irrespective of changing ground surfaces and asymmetric 

elements added to the system. The simulation and testing of this 

model learning algorithm would be performed on the EvoBot 

platform developed in SUTD’s Motion, Energy and Control 

Laboratory.   
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I. INTRODUCTION 

Modeling of physical systems has always been a challenge, 

yet animals and other organisms in nature are able to 

accurately and efficiently learn the dynamics of their bodies 

within a certain span of time. This is apparent if one observes 

the stark difference in the manner in which a limb or any other 

body part is controlled in an infant and in an adult. Organisms 

use the learnt internal models of their bodies to control and 

navigate their bodies in the world around them, to react to 

environmental disturbances and are also able to adapt to 

changes in their own bodies or in the environment they are in.  
In the area of robotics, mathematical models are used to 

predict the behaviour of a system, in order to control it. These 
models typically aim to predict the kinematics or dynamics of 
the physical system through differential equations or 
probabilistic methods. As the tasks assigned to robots start to 
involve more and more stochastically varying environmental 
components, arriving at a good dynamic model of the system 
can be very challenging. The difficulty could be attributed to 
several factors, including the sheer complexity of the robot 
linkages, as well as varying environmental conditions. For 
example, a good robot model need not be valid when say, the 
robot is required to hold some additional mass (for say, 
foraging applications) or when the surface roughness of the 

ground changes considerably (for mobile robots). Apart from 
this, owing to random errors and environment noise, a 
conventional mathematical model of a system is never correct 
beyond a certain limit. Parameters in the models are usually 
corrected and re-corrected till that limit is brought to within 
acceptable bounds. Even after the process of parameter fitting, 
the model only has a limited use. For example, once the system 
is taken out of the environment for which it was modeled, the 
model of the system‟s behaviour in this new environment may 
need to be completely reformulated. This greatly limits the 
usability of the system itself, as it confines the system to a 
certain environment, if not, to environments very similar to the 
one it was modeled in. For these reasons, it is essential to 
determine a more robust way of describing the rules that 
govern a system‟s dynamics. This project will conduct 
exploratory research into alternative online model learning 
algorithms to try and learn the dynamics of the robot. Several 
existing algorithms to this end may also be tested in the 
process. 

II. LITERATURE REVIEW

Learning patterns from data in order to formulate a useful 

model from it is a field that is well established and has been 

extensively studied. The learning methods are broadly 

classified into supervised and unsupervised methods based on 

whether the learning is performed on labeled or unlabeled 

data. In supervised learning, one is presented with a set of 

input data and a corresponding set of desired output data. 

Although the approaches may vary, all supervised learning 

algorithms are focused on finding a mapping function between 

these two sets of data. Some of the very popular and 

extensively used learning algorithms are artificial neural 

networks, support vector machines, decision trees, etc., 

Artificial neural networks encompasses a number of the 

popular techniques that exist today for supervised learning. 

Some of these are multi-layer perceptrons [3,4], radial basis 

function networks and self organizing maps [6]. Multi-layer 

perceptrons use a network of nodes called neurons, which are 

activated as per some activation function, usually a sigmoid or 

a hyperbolic tangent function, the forms of which are shown 

below. 

𝑦𝑖 = 1/(1 + 𝑒−𝑣𝑖)       …(1) 



𝑦𝑖 = tanh⁡(𝑣𝑖)     …(2) 

Where yi is the output and vi is the input. Typically, the nodes 

are present in two layers, although more layers can also be 

used. These nodes are connected to each other by weights, 

which are parameters that are tuned in order to approximate 

the function that maps the inputs to the outputs. The learning 

process consists of computing the error between the desired 

and real output of each neuron and then updating the weights 

accordingly using a method called backpropagation [4].  

    The radial basis function networks is a simplification over 

the multi layer perceptrons, as it uses only a single layer, and 

it uses a radial basis function as its activation function. A 

radial basis function is one whose output depends on the 

distance r between its center c, and the input value x. A 

standard radial basis function [1,2] is shown below: 

∅ 𝑟 =
𝑒−𝑟2/2𝜎2

 2𝜋𝜎2
    …(3) 

Where 𝜎 is the variance of a gaussian function. The method of 

performing regression with radial basis function networks is 

similar to that in multi-layer perceptrons, in that the output of 

all the functions are weighted and summed together to obtain 

the global output. The weights are updated based on the 

network error, as in multi-layer perceptron, but using methods 

such as gradient descent. 

     Self organizing maps is another type of artificial neural 

network. However, it is trained using unsupervised learning in 

order to classify the inputs according to their similarities. A 

useful feature of this method is that it preserves the 

topological features of the input space.  

    One of the most popular methods for learning is one called 

support vector machines [7]. In this method, hyperplanes, or 

high dimensional planes of separation between different object 

classes are created in order to perform tasks such as 

classification and regression. The hyperplanes are chosen in 

such a way that the margin of separation between classes is 

maximized. 

     All these methods have been used to learn the kinematic 

and dynamic models of various physical systems. However, in 

all these methods, during the learning process, the weights or 

other parameters are updates globally. The distinguishing 

feature of this project is that it attempts to learn models by 

performing the parameter update locally. This method of local 

update may converge more quickly as the error will need to be 

minimized only locally, rather than globally. However, it may 

suffer from problems such as overfitting as some of the noise 

and other disturbances may be learnt, instead of being ignored 

during the model update in each iteration. The next section 

will discuss some existing as well as possible directions for 

advancing locally updating model learning techniques. 

III. THEORY

Locally updating modeling techniques are generally less 

extensively studied as compared to the globally updating 

techniques as mentioned in the previous section. In globally 

updating learning approaches, a new training point affects 

many parameters that are both near as well as far away from 

the query point. Also, the answer to a query depends on many 

parameters. Locally updating methods attempt to fit the 

training data only in a region around the location of the query 

point. Apart from local learning, algorithms may also use local 

selection, in which a distance function is used to determine 

which points are relevant to the query. Generally, all of the 

global learning techniques can be converted to local ones by 

making use of a distance function which emphasizes points 

close to a query more than points away from it.  

     Some examples of local models include nearest neighbor, 

weighted average and locally weighted regression. Locally 

weighted regression methods use Gaussian weights, but with 

the weights approximated by the least squares method. The 

main difference between radial basis function networks and 

locally weighted regression methods lies in the introduction of 

a linear model associated to each radial basis function and 

used to perform least squares regression. Each radial basis 

function defines a region of validity for the corresponding 

linear model. It globally approximates non-linear functions by 

combining local linear models. 

    Compared to artificial neural networks or radial basis 

function networks, locally weighted regression benefits from 

the power of linear estimation methods. But it needs to retain 

all training data to perform the least squares approximation, 

which may be infeasible for large solution spaces given 

memory limitations.  

    Another variation of the approach mentioned above is the 

locally weighted projection regression method, in which the 

input dimensionality is reduced using partial least squares. In 

this approach, a projection is made on the input vector to 

model high dimensional functions only in their most relevant 

directions.  

     There are several improved versions possible for the above 

methods, such as increasing the number of regions into which 

the input space is divided, especially in areas where there is a 

sudden variation of output.  

     The project will aim to first test out the existing versions of 

the local learning and perhaps include additional 

improvements to it. In order to test out the learning algorithms 

mentioned above, actual robot data will be used to train the 

learning algorithm. Real time implementation of the locally 

weighted regression algorithm is described in this work. 

IV. PLATFORM AND CONVENTIONAL DYNAMIC MODEL

The EvoBot is a differentially driven robot, with motors on 

either sides of its body. The wheels are coupled to the motors 

through a gearbox with a gear reduction ratio of 1:100. The 

speed of each motor is controlled by a pulse width modulated 

voltage signal. The robot's speed and heading can thus be 

controlled by changing the duty cycles associated with the two 



PWM voltages. The heading only depends on the difference in 

the speeds of the two motors, and the distance between the 

wheels. 

The robot is modeled using the bond graph technique [8]. In 

the model, the robot is treated as two point masses connected 

together, with the two masses concentrated on either side of 

the robot as shown in figure 1. The two halves are treated 

independently and the dynamics of each side is modeled. 

These sub-models are later combined to give the complete 

model of the EvoBot platform. 

Figure 1: The EvoBot platform 

Figure 2: Model of one side of the robot 

Figure 2 shows the bond graph model of one of the halves of 

the EvoBot platform. In the model, a pulse width modulated 

voltage source in series with an internal resistance drives the 

two motors. The motor is modeled as a gyrator element with 

its inductive behavior neglected. The motors in the robot also 

contain a gearbox which provides a speed reduction of 1:100, 

which is also modeled. The rotational motion of the motor is 

converted to translational motion using a transformer element 

whose modulus is equal to the radius of the wheel. Each motor 

is assumed to be attached to half the total mass of the robot. 

The motion of both „halves‟ of the robot are coupled together 

to model the rotational motion of the robot.  The model does 

not account for the electrical dynamics of the system, as we 

are primarily concerned with the mechanical dynamics. The 

equations derived from the bond graph are shown below:

Where: 

𝑣1- Velocity of a point on the rim of the wheel/velocity of one

side of the robot 

𝑣2- Velocity of a point on the rim of the other wheel/velocity

of the other side of the robot 

𝜃– Heading/ orientation 

𝑅𝑏  – Internal resistance of the battery (0.5Ω)

K – K value of the motors (0.005V/rad/s) 

G – Gear Ratio of motors (1/100) 

r – Radius of the wheels (0.02m) 

l – equivalent width of the robot (0.095)

m – equivalent mass of the robot (0.26kg)

𝑉- Battery Voltage (3.8V)

𝑢1- PWM ratio to first motor

𝑢2- PWM ratio to second motor

𝑅𝑓- Translational Frictional Damping Constant (21Ns/m)

The states in the above linear model of the system are the 

wheel velocities and the heading/orientation. If the required 

output is the position in the x and y directions, these can easily 

be derived by performing a non linear transformation on the 

states 𝑣1 , 𝑣2and 𝜃 as shown below:

Where x and y are the co-ordinate positions of the robot. 

This model approximates the behaviour of the robot to a good 

degree of accuracy on a test platform, in which the surface 

under question is wooden. However, when the surface is 

changed, the model may not hold true anymore. The aim of 

this project is to have the EvoBot learn the model from the 

data it collects, irrespective of the environmental parameters. 

This way of learning is adaptive in nature, and is expected to 

give the system a certain degree of robustness. The learning is 

tested by evaluating the performance of the robot for a simple 

task such as driving in a straight line. Currently, minor 

fabrication defects and other factors cause some asymmetry in 

the robot. The model learning algorithm should be able to 

adapt to these intricacies and make the robot perform its given 

task (moving straight) irrespective of the asymmetry. In order 

to truly evaluate the adaptive ability of the algorithm, artificial 

asymmetries are introduced by covering one side of the 

robot‟s tracks with smooth tape. This causes the robot to drift 

towards one direction by default. The learning algorithm 

should be able to learn these patterns and apply the 

corresponding correction. 

MODEL LEARNING AND RESULTS 

Post processed learning: 

In order to test out the working of the locally weighted 

regression algorithm, some test data from the EvoBot was 



collected and presented as training input. The data consisted of 

the distance covered by the robot and the time in milliseconds. 

The test corresponding to this data was such that the robot was 

made to move in the forward direction in discontinuous bursts, 

with the robot moving at full speed and then stopping 

periodically. Figure 3 shows the results in which the output of 

a learnt model is compared with that of the actual robot data. 

As seen from the figure, the model seems to learn the data 

very well, perhaps even leading to a problem of overfitting the 

data. In the next section, the learning model is applied to a 

more realistic task of having the robot learn its own controller 

despite inherent asymmetries artificially imposed on it. 

Figure 3. Figure showing the comparison of robot distance 

data with data from the learnt model 

Real-time learning: 

In order to test out the real time learning ability of the 

algorithm, one side of the robot was taped as mentioned in the 

previous sections and as shown in figure 4. The learning was 

tested with different wheels on either side as well, as shown in 

figure 5. 

Figure 4: One side of the robot taped to introduce asymmetry 

Figure 5: Different wheels used on either side of the robot to 

introduce asymmetries 

The robot was then trained for the ability to maintain a given 

heading value irrespective of its internal asymmetries. The 

natural tendency of the robot is to drift towards one side, but 

the learning objective is to learn the controller so that it can 

correct itself to travel at the required heading.  

    The formulation of the problem was as follows: Since the 

drift or the angular velocity of the robot is dependent on the 

difference in the PWM duty cycles between the two sides, the 

left and right PWM duty cycles were parameterized as shown 

below: 

𝑢𝑙𝑒𝑓𝑡 = 𝑢𝑏𝑎𝑠𝑒 + 𝛿𝑢

…(4) 

𝑢𝑟𝑖𝑔𝑕𝑡 = 𝑢𝑏𝑎𝑠𝑒 − 𝛿𝑢

In this way, the number of control parameters are reduced 

from two to just one parameter, 𝛿𝑢. This was done to make it 

convenient for the learning algorithm, as now, the regression 

problem is reduced to a 1 dimensional one. 

    There were two modes of training developed; one in which 

the robot scanned for errors in the heading and corrected itself 

by training through a number of different predetermined 

values of δu for a predetermined length of time and storing the 

corresponding values of drift and 𝛿𝑢 and performing LWR on 

this data, and the second mode in which the robot corrected 

itself through gradient descent, but in the process, collected 

drift and 𝛿𝑢 data in order to learn a good model of the 

controller through LWR. The time for which a particular 

action was executed in this mode was also predetermined. For 

both modes, a system was set up for connecting the robot to a 

central computer through Bluetooth and for recording the 

robot data into a csv file. The csv file is then read to retrieve 

the data, and LWR is performed on this data.  

   Each of the above mentioned approaches have their own 

merits and demerits. The merits of the first approach is that the 

solution space is explored quite well, but it suffers from the 

disadvantages that the exploration of the solution space is pre-

defined, and that the learning is not real time in nature, but is 

more like batch learning, as the robot starts learning only after 

it has run through its training routine.  



    In the second approach, the advantage is that the learning 

through gradient descent is truly real time, but the exploration 

of the solution space depends on the magnitude of initial error 

experienced just before learning. Since gradient descent 

converges relatively quickly, the number of data points 

explored is limited. In summary, it results in the robot learning 

a limited solution space, but in real time.  One way in which to 

improve approach 2 is to insert previously collected data into 

the system just before it starts updating it. This could be 

thought of as a way to incorporate memory into the robots, 

with the memory being continuously updated with the learning 

algorithm.  

   Overall, the algorithm worked well for real time learning, 

and was able to generate a model that fit the data well. A 

sample output of the algorithm is shown in figure 5. It can be 

seen that the non-linear aspects of the system are well 

captured by the learnt model. 

Figure 5: A plot of angular drift vs the parameter δu on data 

collected through approach 1. 

Figure 6: Paths of the robot shown before and after the 

learning algorithm  

Problems with LWR: 

Although LWR was quite efficient at learning models in real 

time, its performance is highly dependent on the Gaussian 

kernel chosen. If the Gaussian kernel has a very small standard 

deviation, the algorithm fails to update certain data points that 

are far from the query point. On the other hand, if the kernel 

has a high variance, the model update is smooth, but less 

accurate. Since increasing the variance of the kernel function 

unfavorably affects the results, this option is not preferred. In 

order to handle such cases even when the kernel has a low 

variance, the final learnt model was passed through a layer of 

linear interpolation in order for the model to be able to return 

reasonable values at all points in the data range. Alternatively, 

a non-gaussian kernel such as a sigmoid or hyperbolic tangent 

function could also be chosen, although its effects have not 

been studied in this project. 

CONCLUSION 

In this work, a locally weighted approach to regression is 

studied and implemented. The weights used are Gaussians 

whose variances depend on the distance of a particular point to 

a query point. Implementation was performed on the EvoBot 

platform, in order to perform the particular task of moving in a 

specified heading direction by learning the model of its 

controller. Internal asymmetries were added in order to make 

the learning task more challenging. The formulation of the 

problem was described in detail. The post-processed as well as 

real time approaches to the learning algorithm were described 

in detail and the corresponding results were presented and 

discussed. It was found that the learnt model of the system 

was adaptive in nature and performed significantly better than 

the conventional model of the system, which was also 

described. Lastly, some limitations of the LWR method were 

also described and potential solutions were proposed.  
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