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Abstract

The idea of reusing or transferring information from previously learned tasks (source tasks) for the learning of new tasks
(target tasks) has the potential to significantly improve the sample efficiency of a reinforcement learning agent. In this
work, we describe a novel approach for reusing previously acquired knowledge by using it to guide the exploration of an
agent while it learns new tasks. In order to do so, we employ a variant of the growing self-organizing map algorithm, which
is trained using a measure of similarity that is defined directly in the space of the vectorized representations of the value
functions. In addition to enabling transfer across tasks, the resulting map is simultaneously used to enable the efficient
storage of previously acquired task knowledge in an adaptive and scalable manner. We empirically validate our approach
in a simulated navigation environment and also demonstrate its utility through simple experiments using a mobile micro-
robotics platform. In addition, we demonstrate the scalability of this approach and analytically examine its relation to the
proposed network growth mechanism. Furthermore, we briefly discuss some of the possible improvements and exten-
sions to this approach, as well as its relevance to real-world scenarios in the context of continual learning.
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is the state space, 4 is the action space, 7 is the transi-
tion function, and R is the reward function. As in some
recent works (Barreto et al., 2017; Laroche & Barlier,
2017), we address the relatively simple case where tasks
vary only in the reward function R, while S, A, and 7
remain fixed across the tasks. For knowledge transfer
to be effective, source tasks need to be selected appro-
priately. Reusing knowledge from an inappropriately
selected source task could lead to negative transfer
(Lazaric, 2012; Taylor & Stone, 2009), which is detri-
mental to the learning of the target task. In order to

I. Introduction

The use of off-policy algorithms (Geist & Scherrer,
2014) in reinforcement learning (RL) (Sutton & Barto,
2011) has enabled the learning of multiple tasks in par-
allel. This is particularly useful for agents operating in
the real world, where a number of tasks are likely to be
encountered, and may be required to be learned (Sutton
et al., 2011; White, Modayil, & Sutton, 2012). As more
and more tasks are learned through agent—environment
interactions, an ideal agent should be able to efficiently

store and extract meaningful information from this
accumulated knowledge and use it to accelerate its
learning on new, related tasks. This is an active area of
research in RL, referred to as transfer learning (Taylor
& Stone, 2009). Formally, transfer learning is an
approach to improve learning performance on a new
“target” task M7, using accumulated knowledge from a
set of “source” tasks, Mg = {M,, ...M,, ...M,}.
Here, each task M is a Markov decision process (MDP)
(Puterman, 1994), such that M = {S, A, 7, R}, where S

avoid such problems and ensure a beneficial transfer, a
number of MDP similarity metrics (Carroll & Seppi,
2005; Ferns, Panangaden, & Precup, 2004) have been
proposed. However, it has been shown that the optimal
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MDP similarity metric to be used is dependent on the
transfer mechanism employed (Carroll & Seppi, 2005).
In addition, for an agent interacting with its environ-
ment, value functions pertaining to numerous tasks
may be learned over a period of time. Some of these
tasks may be very similar to each other, which could
result in considerable redundancy in the stored value
function information. Traditional transfer mechanisms
are generally not designed to handle situations involv-
ing a large number of source tasks, which a real-world
agent could possibly encounter. From a continual
learning perspective, a suitable mechanism is needed to
enable the storage of such information in a scalable
manner.

In this work, we represent value functions (Q-val-
ues) using linear function approximation (Sutton &
Barto, 2011), and the knowledge of a particular task is
assumed to be contained in the learned weights associ-
ated with the corresponding value (Q-) function. We
define a cosine similarity metric within this value func-
tion weight space and use this as a basis for maintain-
ing a scalable knowledge base, while simultancously
using it to perform knowledge transfer across tasks.
This is achieved using a variant of the growing self-
organizing map (GSOM; Alahakoon, Halgamuge, &
Srinivasan, 2000). The inputs to this GSOM algorithm
consist of the value function weights of newly learned
tasks, along with any previously learned knowledge
that was stored in the nodes of the self-organizing map
(SOM). During the GSOM training process, the win-
ning node is selected based on the cosine similarity
metric mentioned above. As the agent interacts with its
environment and learns the value function weights cor-
responding to new tasks, this new information is incor-
porated into the map, which evolves by growing (if
needed) to a suitable size in order to sufficiently repre-
sent all of the agent’s gathered knowledge. Each ele-
ment/node of the resulting map is a variant of the input
value function weights (knowledge of previously
learned tasks). These variants are treated as solutions
to arbitrary source tasks, each of which is related to
some degree to one of the previously learned tasks. It is
worth mentioning that the aim of storing knowledge in
this manner is not to retain the exact value function
information corresponding to all previously learned
tasks, but to maintain a compressed and scalable
knowledge base that can approximate the value func-
tion weights of previously learned tasks. Such approxi-
mations may be necessary in applications such as
mobile robotics, where on-board memory is typically
limited.

While learning a new target task, this knowledge
base is used to identify the most relevant source task,
based on the same similarity metric. The value function
associated with this task is then greedily exploited to
provide the agent with action advice to guide it toward
achieving the target task. Due to the random

Multi-task RL Agent

New task
knowledge

Action suggestions for exploration

Figure I. The overall structure of the proposed SOM-based
knowledge storage and transfer approach.

initialization of the weights, the agent’s initial estimates
of the target task value function weights is expected to
be poor. Consequently, it is unlikely that appropriate
tasks would be selected for transfer at this stage.
However, as the agent gathers more experience through
its interactions with the environment, these estimates
improve, which consequently leads to improvements in
the estimates of the similarities between the target and
source tasks. As a result, the agent becomes more likely
to receive relevant action advice from a closely related
source task. This action advice can be adopted, for
instance, on an e—greedy basis, essentially substituting
the agent’s exploration strategy. In this manner, the
knowledge of source tasks can be used to merely guide
the agent’s exploratory behavior, thereby minimizing
the risk of negative transfer which could have otherwise
occurred, especially if value functions or representa-
tions were directly transferred between the tasks.
Specifically, unlike direct transfer approaches, our
approach only biases the agent’s exploration strategy,
and consequently, poor transfers are not catastrophic,
and are relatively easier to withstand.

Hence, apart from maintaining an adaptive knowl-
edge base of value function weights related to learned
tasks, the proposed approach aims to leverage this
knowledge base to make informed exploration deci-
sions, which could lead to faster learning of target
tasks. This could be especially useful in real-world sce-
narios where factors such as learning speed and sample
efficiency are critical, and several new tasks may need
to be learned continuously, as and when they are
encountered. The overall structure of the proposed
methodology is depicted in Figure 1.

2. Related work

The sample efficiency of RL algorithms is one of the
most critical aspects that determines the feasibility of
its deployment in real-world applications. Transfer
learning is one of the mechanisms through which this



George Karimpanal and Bouffanais

13

issue can be addressed. Consequently, numerous tech-
niques have been proposed (Lazaric, 2012; Taylor &
Stone, 2009; Zhan & Taylor, 2015) to efficiently reuse
the knowledge of learned tasks. A number of these
(Ammar et al., 2014; Carroll & Seppi, 2005; Song,
Gao, Wang, & An, 2016) rely on a measure of similar-
ity between MDPs in order to choose an appropriate
source task to transfer from. However, this can be pro-
blematic, as no such universal metric exists (Carroll &
Seppi, 2005), and some of the useful ones may be com-
putationally expensive (Ammar et al., 2014). In this
work, the similarity metric used is computationally
inexpensive, and the degree of similarity between two
tasks is based solely on the value function weights asso-
ciated with them. The use of such a similarity metric,
however, is restricted to cases where the MDPs vary
only in their reward functions. Although some recent
approaches such as the one described by Gupta, Devin,
Liu, Abbeel, and Levine (2017) address the general case
without such restrictions, it makes strong assumptions
regarding the existence of structural similarities in the
reward functions of the target and source tasks. This
approach primarily focuses on the transfer between
agents having different state-action spaces and transi-
tion dynamics. In addition, it is not designed to handle
multiple tasks and cannot automatically select appro-
priate source tasks.

In the approach we describe here, once an appropri-
ate source task is identified, its value functions are used
solely to extract action advice, which is used to guide
the exploration of the agent. Similar approaches to
transfer learning using action advice have been reported
in Torrey and Taylor (2013), Zhan and Taylor (2015),
and Zimmer, Viappiani, and Weng (2014) which adopt
a teacher—student framework for RL. However, these
works assume that an effective policy for a particular
target task is already accessible to the teacher, which is
not the case in this work. SOM-based approaches have
previously been used in RL for a number of applica-
tions such as improving learning speed (Tateyama,
Kawata, & Oguchi, 2004) and representation in contin-
uous state-action domains (Montazeri, Moradi, &
Safabakhsh, 2011; Smith, 2002). In the context of scal-
ing task knowledge for continual learning (Ring, 1994),
Ring, Schaul, and Schmidhuber (2011) described a
modular approach to assimilate the knowledge of com-
plex tasks using a training process that closely resem-
bles SOM. In this approach, a complex task is
decomposed into a number of simple modules, such
that modules close to each other correspond to similar
agent behaviors. Teng, Tan, and Zurada (2015) pro-
posed a SOM-based approach to integrate domain
knowledge and RL, with the aim of developing agents
that can continuously expand their knowledge in real
time, through their interactions with the environment.
These ideas of knowledge assimilation are also reflected

in this work, although we also aim to reuse this knowl-
edge to aid the learning of other related tasks.

The transfer mechanism described here is inherently
tied to the SOM-based approach for maintaining the
knowledge of learned tasks. Apart from SOM, other
clustering approaches (Carroll & Seppi, 2005; Liu,
Chowdhary, How, & Carrin, 2012; Thrun &
O’Sullivan, 1998) have also been applied to achieve
transfer learning in RL. In one of the earliest notable
approaches to transfer learning, Thrun and O’Sullivan
(1998) described a methodology for transfer learning
by clustering learning tasks using a nearest neighbor
clustering approach. Task similarity was determined
using a task transfer matrix, which helped localize the
appropriate task cluster to transfer from.

More recent methods, such as the approach of
Universal Value Function Approximators (Schaul,
Horgan, Gregor, & Silver, 2015) attempt to achieve
transfer across tasks by learning a unified value func-
tion approximator that generalizes over states as well
as goals. However, due to the fact that the underlying
structure in the state-goal space may be highly complex,
such an approach would, in most cases, be dependent
on computationally inefficient function approximators
such as deep neural networks, which may be infeasible
to train in many real-world scenarios. Our approach,
on the other hand, is applicable to a range of value
function representation schemes (linear function
approximation, tabular, etc.) and allows value func-
tions to be learned using any standard off-policy
method. The structure of the goal space is extracted
separately, using SOMs.

Perhaps the most similar work is the probabilistic
policy reuse (PPR) algorithm (Fernandez & Veloso,
2013), in which previously learned policies are used to
bias the exploratory actions of the agent when it learns
a new task. In addition to applying this exploration
bias, a library of policies is also maintained, based on
the similarities in their average discounted returns per
episode. These “core” policies are considered to be rep-
resentative of the domain wunder consideration.
Although this work shares a very similar exploration
strategy to the one used in PPR, the manner in which
policies are chosen to provide exploratory action advice
varies considerably. We hypothesize that the non-linear
basis function in SOMs would allow for the domain
structure to be extracted more accurately than the aver-
age return basis used in PPR. In addition, with the use
of SOMs, different policies or value functions (and
hence different agent behaviors) can be mapped in rela-
tion to each other and can be visually represented.

Apart from PPR, the recent “Actor-mimic”
(Parisotto, Ba, & Salakhutdinov, 2015) approach also
performs transfer using action advice. In this approach,
useful behaviors of a set of expert policy networks are
compressed into a single multi-task network, which is
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then used to provide action advice in an é—greedy man-
ner. The authors also report the problem of dramati-
cally varying ranges of the value function across
different tasks, which is resolved using a Boltzmann
distribution function. In this work, the use of the cosine
similarity metric resolves this issue and ensures that the
similarity measure between tasks is bounded. Cosine
similarity measures have previously been used in
machine learning applications (Chunjie, Zhan, Wang,
& Qiang, 2017; Huang, Milne, Frank, & Witten, 2012),
but to the best of our knowledge, it has not been used
as a basis for task similarity or transfer in RL. Apart
from being able to handle tasks with vastly different
value functions, the use of such a similarity metric also
shields against negative transfer to a certain extent, as
it provides a basis for the appropriate selection of
source tasks. In addition to this, the actor-mimic and
other approaches ignore the issues of knowledge redun-
dancy and scalable storage, both of which are explicitly
addressed in the proposed SOM-based approach.

3. Methodology

In this work, we present an approach that enables the
reuse of knowledge from previously learned tasks to aid
the learning of a new task. Our approach consists of two
fundamental mechanisms: (a) the accumulation of learned
value function weights into a knowledge base in a scalable
manner and (b) the use of this knowledge base to guide
the agent during the learning of the target task. The basis
for these mechanisms is centered around the task similar-
ity metric we propose here. We consider two tasks to be
similar based on the cosine similarity between their corre-
sponding learned value function weight vectors. For
instance, the cosine similarity ¢, ,,, between two non-zero
weight vectors w; and w; is given by

Copowy = Wi W/ [Wr || (1)

The key idea is that two tasks are more likely to be
similar to each other if they have similar feature weight-
ings. Using such a similarity metric has certain advan-
tages, such as boundedness and the ability to handle
weight vectors with largely different magnitudes.
During the construction of the scalable knowledge base,
the mentioned similarity metric (equation (1)) is used as
a basis for training the SOM. Once this map has been
constructed, the cosine similarity is again used as a basis
for selecting an appropriate source task weight vector
to guide the exploratory behavior of the agent while it
learns a new task. Initially, owing to poor estimates of
the value function weights of the new task, the selected
source task may not be appropriate. However, as these
estimates improve, more appropriate source tasks are
identified and the corresponding action advice becomes
more likely to be relevant to the task at hand. We now
describe these mechanisms in detail.

3.1. Knowledge storage using SOM

An SOM (Kohonen, 1998) is a type of unsupervised
neural network used to produce a low-dimensional rep-
resentation of its high-dimensional training samples.
Typically, an SOM is represented as a two- or three-
dimensional grid of nodes. Each node of the SOM is
initialized to be a randomly generated weight vector of
the same dimensions as the input vector. During the
SOM training process, an input is presented to the net-
work, and the node that is most similar to this input is
selected to be the “winner.” The winning node is then
updated toward the input vector under consideration.
Other nodes in the neighborhood are also influenced in
a similar manner, but as a function of their topological
distances to the winner. The final layout of a trained
map is such that adjacent nodes have a greater degree
of similarity to each other in comparison to nodes that
are far apart. In this way, the SOM extracts the latent
structure of the input space.

For our purposes, the knowledge of an RL task is
assumed to be contained in its associated value func-
tion weights, which may be learned using a number of
approaches (Sutton & Barto, 2011). A naive approach
to storing knowledge associated with a number of tasks
is to explicitly store the value function weights of these
tasks. Apart from the scalability issue associated with
such an approach, if several of these tasks are very sim-
ilar or nearly identical to each other, it could introduce
a high degree of redundancy in the knowledge stored.
A more generalized approach to knowledge storage
would be to store the characteristic features of the
weight vectors associated with the learned tasks. The
ability of the SOM to extract these features in an unsu-
pervised manner makes it an attractive choice for the
proposed knowledge storage mechanism.

In our approach, a rectangular SOM topology is
used, and the inputs to the SOM are learned value
function weights of previously encountered/learned
tasks (input tasks). The hypothesis is that after train-
ing, the weight vectors associated with each node in the
SOM have varying degrees of similarity to the input
vectors, and hence, they may correspond to value func-
tion weights of tasks which are related to the input
tasks. Hence, each node in the SOM could be assumed
to correspond to a source task, and the SOM weight
vector associated with an appropriately selected node
could serve as source value function weights which
could be used to guide the exploration of the agent
while learning a new task. The details of the transfer
mechanism are discussed in section 3.2.

In a continual learning scenario, an agent may
encounter a number of tasks as it interacts with its envi-
ronment. As per the metric defined in equation (1), the
value function weights corresponding to some of these
tasks may possess a large degree of similarity, while
others may vastly differ from each other. Generally, an
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SOM would be able to extract representative features in
the value function weights of highly similar tasks.
Learning and storing these representative features could
help avoid the storage of redundant task knowledge.
However, an SOM containing only a few number of
nodes may not be able to represent a wide range of task
knowledge to a sufficient level of accuracy. Hence, the
size of the SOM may need to adapt dynamically as and
when new tasks are learned, and existing task knowl-
edge is updated. We address this problem by allowing
the number of nodes in the SOM to change, using a
mechanism similar to that used in the GSOM algo-
rithm. For an SOM containing N nodes, each node i is
associated with an error e; such that for a particular
input vector W, , if node s, (with a corresponding weight
vector wy, ) is the winner, the error e, is updated as

e, e, T 1— Cwywy, (2)

The term (1 — ¢y, ., ) in equation (2) is proportional
to the Euclidean distance between the L*-norm versions
of input vectors W, and w;,. Hence, the error update
equation (equation (2)) is equivalent to that used in
Alahakoon et al. (2000). Once all the input vectors are
presented to the SOM, the total error, E of the network
is simply computed as £ = Zﬁvz L €. The total error is
computed for each iteration of the SOM. In subsequent
iterations, if the increase in the total error per node
exceeds a certain threshold G7, new nodes are spawned
at the boundaries of the SOM. Hence, growth of the
SOM takes place if

N
S ekt S ek

i=1 i=1
NI

> Gr (3)

where ef.“ is the error corresponding to node i in iteration
k,and N’ (where N’ = N) is the number of nodes in the
SOM in the subsequent iteration £ + 1.

In our implementation, the configuration of the
SOM is restricted to be square, and SOM growth
occurs by adding new nodes only to the eastern (right)
and southern (bottom) sides of the SOM. The weight
vectors of the newly spawned nodes are initialized to
the mean of their neighbors and are subsequently modi-
fied by the SOM training process. The tendency of this
SOM training is to reduce the overall network error by
achieving more accurate representations of the inputs
presented to it. If the value functions are poorly repre-
sented, the average network error grows, until it exceeds
the threshold G7, which results in the growth of the
SOM, as per equation (3). In this way, the SOM can
grow in size and representation capacity, while avoiding
the storage of redundant task information. The avoid-
ance of redundancy is supported by the fact that when
the value functions of tasks that are highly similar to
the SOM nodes are presented to the SOM, it does not

spawn new nodes in response to this. New nodes are
only spawned when the network fails to sufficiently rep-
resent the value function of the previously learned
tasks. The overall GSOM training process is described
in Algorithm 1.

The nature of the described SOM algorithm is such
that all the input vectors are needed during the train-
ing. However, for applications such as robotics, where
the agent may have limited on-board memory, this may
not be a feasible approach. Thousands of tasks may be
encountered during its lifetime, and the value function
weights of all these tasks would need to be explicitly
stored in order to train the SOM. Ideally, we would like
the knowledge contained in the SOM to adapt in an
online manner, to include relevant information from
new tasks as and when they are learned. We achieve this
online adaptation by making modifications to the man-
ner in which the SOM algorithm is trained. Specifically,
when a new task is learned, we update the SOM by pre-
senting the newly learned weights, together with the
weight vectors associated with the nodes of the previ-
ously learned SOM as inputs to the GSOM algorithm.
The resulting SOM is then used for transfer. In sum-
mary, the weights of the SOM are recycled as inputs
while updating the knowledge base using the GSOM
algorithm. The implicit assumption is that the weight
vectors learned by the SOM sufficiently represent the
knowledge of the previously learned tasks. This
approach of updating the SOM knowledge base allows
new knowledge to be adaptively incorporated into the
SOM, while obviating the need to explicitly store the
value function weights of all previously learned tasks.

3.1.1. SOM growth. In Algorithm 1, the nature in which
the growth of the SOM occurs is not specified. Ideally,
the growth must take place such that the SOM accu-
rately summarizes the learned task knowledge, while
also generalizing to tasks that are similar in nature.
The growth should be measured in nature, only occur-
ring when the current SOM is not able to appropriately
represent the learned task knowledge. For the case
where growth has just occurred (N' > N), if we assume
the errors corresponding to the N original nodes to be
approximately the same across subsequent iterations of
the GSOM training, then equation (3) can be written as

N ki ¥ K+ 1 Nk
Yot Y e =Y e
i=1 i =N+ 1 =1
1 1 N’ 1 $GT
and hence
N
S ekt
i=N+1
i N’ gGT
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Algorithm | GSOM training mechanism

I: Inputs:

wy = {W,,, ... W, ...W, | : Input vectors to the GSOM algorithm. These may be value function weights of previously learned tasks
or weights corresponding to the nodes of a previously learned SOM.

N : Initial number of nodes in the SOM

0y : Initial value of neighborhood function o

7| : Time constant to control the neighborhood function
Ko : Initial value of SOM learning rate

75 : Time constant to control the learning rate

Ws = {Ws,, ... W, ... Ws, } : Initial weight vectors associated with the N nodes in the SOM

e : Error vector, initialized to be zero vector of length N
E = 0 : Initial value of average error
Gr : Growth threshold parameter
Nicer : Number of SOM iterations
2:fori = | : Nir do
: Randomly pick an input vector X from wy

Select winning node n,,;, based on highest cosine similarity to input vector X

3

4

5 og=0gpexp(—i/7))
6: Kk =kKoexp(—i/T))
7. forj=1:Ndo

8

Compute topological distance d,,,, j between nodes nyi, and j

9: h(nwin’j) = eXP( - dﬂwinsj/za-z)
10: Ws, = Wy, T 1 % h(nwin, ) || X — wq, ||
Il: end for

|2: e(nwin) = e(nwin) + 11— Cx, Wonin

13: E= 30 e

14: if (E; — Ei—))/N>Gr then

15: Trigger SOM growth: Spawn new SOM nodes and expand the error vector, with the values of new elements initialized to

the mean of the previous error vector.
16: Update N as per the number of new nodes added
17: endif
18: end for

If e, represents the average error associated with a
node, then

ea(N' — N)
Nl

N'Gr
, )
N’ —N
The maximum permissible average error e, for
which further growth does not occur is thus

=Gr=e, =

N'Gr
e, =
max N’ _ N
The rate of change of this permissible quantity with

respect to the size of the SOM network can then be
derived to be

’ dN’
N' =N

Wy °

A (ew) = Gt

The stationary point obtained by setting the right-
hand side of equation (5) to zero gives us the update
rule: N' = KN, where K is a constant. In this case, since
the number of SOM nodes must be an integer, K is an
integer. This solution, however, is neither a maximum
nor a minimum, as (d?/dN?)(e,,,) = 0. However, it is
interesting, as setting N' = KN in equation (4) results
in e, becoming dependent only on Gy and K, and

independent of N, the size of the SOM. Hence, this
solution corresponds to the case where the maximum
permissible value for e, is constant, and depends on K|
and it can be shown that limg_..e,,, = Gr. This is a
useful property, as it imposes a finite bound on e,, and
further SOM growth occurs only if e, exceeds this
bound. However, the growth update rule N’ = KN falls
short in terms of the convenience of implementation, as
it does not specify the topology of the SOM.
Specifically, the KN nodes obtained after the SOM
growth could be configured in a number of rectangular
and non-rectangular topologies.

A convenient solution is to restrict the SOM to be
square, such that the growth update rule is set to be
N’ = (v/N + 1)*. By substituting this relation in equa-
tions (4) and (5), we obtain

2
+
0 <G, YN
1+2VN
and
d 1++/N

ﬁ(eanm) =Gr———>
(1 + 2v/N)
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Figure 2. Variations of e, and ;(eq,,.) with the size N of the
SOM.

Using these relations, the variations of e, and
(d/dN)(e,,,,) can be examined for the case when the
SOM is always square (i.e. using the update rule
N’ = (/N + 1)%). Specifically, it is observed that e,
and (d/dN)(e,,,, ), respectively, grow and diminish as
O(v/N). In addition, their asymptotic limits as N — o
can be shown to be

lim e, =

and

lim i

N dN (eamax) = 0

These trends are depicted in Figure 2, which shows
that the maximum permissible limit for the average
error e, increases with the number of nodes, and the
rate of increase decreases, and becomes nearly constant
for larger values of N. Larger permissible limits of e,
make it less likely for the SOM to grow further.
However, large errors also imply the presence of SOM
nodes which do not accurately represent its inputs.
While a less accurate SOM is undesirable, it also allows
for greater diversity in the stored knowledge, which
could potentially be beneficial for guiding the learning
of target tasks when they are highly dissimilar to the
previously learned tasks. Moreover, as previously men-
tioned, restricting the topology to be square is superior
with respect to preventing runaway growth of the
SOM, making it a scalable approach for knowledge
storage.

3.2. Transfer mechanism

Once the knowledge of previously learned tasks has
been assimilated into an SOM, it is reused to aid the

learning of a target task. The weight vector associated
with each node in the SOM is treated as the value func-
tion weight vector corresponding to an arbitrary source
task. Among these source value function weight vectors
(ws), the one that is most similar to the target value
function weight vector wyr is chosen for transfer. That
is, the index of the most similar source task is given by

Si = argmaxcy,, w,

ieNY
and the corresponding source value function weight
vector used for transfer is wy,. Here, N¥  is the set of
all positive natural numbers up to N.

It must be noted that the relevance of the selected
weight vector wy, for transfer depends on how well wy
has been estimated. For example, compared to a ran-
domly initialized wy, a partially converged wy would
be more likely to pick out an appropriate source weight
vector from wg, such that it is capable of providing
action advice relevant to the target task being learned.

In addition to biasing the exploratory actions, trans-
fer could also possibly be achieved by allowing the
selected source task weights to directly modify the
value function weights of the target task. This could be
done, for instance, by biasing the target value function
weights to be closer to the selected source task weights.
However, for a particular task, some of the elements of
the weight vector may have a greater influence on the
agent’s behavior in comparison to others. The cosine
similarity measure does not capture such asymmetries
in the sensitivities of the weight vector elements. Hence,
the direct influence of the selected source task weights
on the weight parameters of the target task could be
detrimental to the agent’s target task performance. In
contrast to this, our approach of allowing the selected
source value function weights to guide the exploratory
actions of the agent is a subtler, and hence, safer
approach for biasing the value function of the target
task.

3.3. Adaptive clustering for multi-task learning

In the navigation experiments described in section 4, in
order to provide agents with a greater degree of auton-
omy with respect to choosing their goals, we allow goal
locations in the environment to be automatically dis-
covered by the agent itself. This is achieved by simply
applying an approach described in Karimpanal and
Wilhelm (2017), where an environment feature vector
F, is defined, and unique configurations of this feature
vector are discovered using an adaptive clustering algo-
rithm. These discovered clusters are treated as the fea-
ture vectors associated with the goal locations of
arbitrary tasks, which are then learned in parallel (i.e.
multiple value function weights are updated with each
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Algorithm 2 The transfer mechanism

I: Inputs:
Trained SOM with N nodes, corresponding to N source
value function weights ws = {Ws,, ... Ws, ... Ws,}
Target task T, initialized with a value function weight wr
Ng: Maximum number of Q-learning episodes
2:fori=1|:Ngdo
3:  while terminal state is not reached do
4: S, = argmaxcy, w;, Where s, is the index of the
ie NN,
winning node
5: With probability of | — ¢, choose action a to be
greedy with respect to wr, and with a probability of ¢,
let a be greedy with respect to w;,.
6: Update wr using standard Q-learning update equation.
7: end while
8: end for
9: Update SOM as per Algorithm |, using wr as one of the
input vectors

interaction) using off-policy learning algorithms such
as Q-learning.

As the agent moves through the environment, it
senses feature vectors F,, and the clustering algorithm
assigns them to different clusters, based on their
Euclidean distances with the centroids of the different
clusters. Next, the element-wise absolute distance
between the centroid of the assigned cluster and com-
ponents of F, is computed. For each element, if this
distance lies within a certain number of standard devia-
tions of the corresponding element in the centroid, then
F, is considered to belong to that cluster; if not, a new
cluster is seeded. Each new cluster is seeded with an ini-
tial non-zero variance, in order to maintain a certain
level of uncertainty about the cluster centroids. The
uncertainty reduces as more number of samples are
observed. Each time a cluster receives a new member,
the centroid and variance of each of the jth feature ele-
ment in the cluster is updated online using the corre-
sponding elements of F,, as follows

vj = (Ncx v + F)/(Ne + 1)
Var; — (N¢ * (Var; + vf) + Ff:)/(NC +1)— vf
Nc «— N¢c +1

where v; and Var; are, respectively, the mean (centroid)
and variance of the jth feature element in the cluster,
and Nc¢ is the number of members in cluster C. In this
way, the approach serves to cluster the feature space in
an unsupervised and adaptive manner without prior
knowledge of the number of clusters that exist in the
space. Each cluster centroid is then treated as the envi-
ronment feature vector associated with an arbitrary
task in the environment. Doing so enables these tasks
to be learned simultaneously using off-policy
algorithms.

1—»““
| |

5 4

0 10 20 30

X

Figure 3. The simulated continuous environment with the
navigation goal states of different tasks (numbered from tasks |
to 5), indicated by the different colored circles.

The purpose of allowing agents to learn multiple
tasks in this off-policy manner is so that they are
equipped with some priors for the value functions of
the different tasks in its environment. Such a prior, if
acquired for a particular task, could provide a basis for
the initial selection of source tasks from the SOM,
when the value function of the corresponding task is
being learned. In addition, this approach of autono-
mously discovering and learning tasks equips the
agents in section 4 with more autonomy and better life-
long learning (Ring, 1994) abilities. The SOM-based
knowledge storage and transfer approaches described
in sections 3.1 and 3.2 are, however, independent of
this autonomous task identification approach and are
intended to be applicable in a more general sense.

4. Results

We use the knowledge storage and reuse mechanisms
described in section 3 to accelerate the learning of tar-
get tasks in navigation environments. We implement
the described mechanisms in simulation as well as with
actual experiments using a micro-robotics platform.
The details of these implementations are described in
this section.

4.1. Simulation experiments

In order to evaluate the described knowledge storage
and reuse mechanisms, we allow the agent to explore
and learn multiple tasks in the simulated environment
shown in Figure 3. The environment is continuous, and
the agent is assumed to be able to sense its x and y
coordinates, which constitute its state. The states are
represented in the form of a binary feature vector F,
containing 100 elements for each state dimension.
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(b)

Figure 4. (a) A visual depiction of an 8 X 8 SOM resulting from the simulations in section 4.1, where value functions are
represented using linear function approximation. (b) A 5 X 5 SOM which resulted when the simulations were carried out using a
tabular approach. In both (a) and (b), the color of each node is derived from the most similar task in Figure 3. The intensity of the
color is in proportion to the value of this similarity metric (indicated over each SOM element).

While navigating through the environment, the agent is
allowed to choose from a set of nine different actions:
moving forward, backward, sideways, diagonally
upward or downward to either side, or staying in place.
The speed associated with these movements is set to be
6 spacial units/s, and new actions are executed every
200 ms.

As the agent executes actions in its environment, it
autonomously identifies tasks using the adaptive clus-
tering approach described in section 3.3. The clustering
is performed on the environment feature vector F,,
which contains elements describing the presence or
absence of specific environment features. For instance,
these features could represent the presence or absence
of a source of light, sound, or other signals from the
environment that the agent is capable of sensing. In the
simulations described here, the environment feature
vector F, contains four elements corresponding to four
arbitrary environment stimuli distributed at different
locations in the environment. As the agent interacts
with its environment, clustering is performed on F, in
an adaptive manner, which helps identify unique con-
figurations of F, which may be of interest to the agent.
During the agent’s interactions with the environment,
the mean of each discovered cluster is treated as the
environment feature vector associated with the goal
state of a distinct navigation task. In our simulations,
the agent eventually discovers five such tasks, the corre-
sponding goal locations of which are indicated by the
colored regions in Figure 3. The value function corre-
sponding to each of these tasks is learned using Q-
learning with linear function approximation (Sutton &
Barto, 2011). For Q-learning, the reward structure is
such that the agent obtains a reward ( + 100) when it is

in the goal state, a penalty (— 100) for bumping into
an obstacle, and a living penalty ( — 10) for every other
non-goal state. In each episode, the agent starts from a
random state and executes actions till it reaches the
associated navigation target region (goal state), at
which point, a positive reward is obtained, and the epi-
sode terminates. For each Q-learning task, the full fea-
ture vector F (where F = {ﬁe Uﬁa}) is used, and the
learning rate « is set to be 0.3, the discount factor v is
0.9, and the trace decay parameter A is set to be 0.9.
The other hyperparameters described in Algorithm 1
are set to the following values for both the simulations
and experiments in this work: N =4, oy =50,
71 = 250, 75 = 0.1, G = 0.3, and Ny, = 1000. Once a
new navigation task 7 is identified, and its value func-
tion weight vector wr is learned, we incorporate this
new knowledge into the SOM knowledge base. In order
to do this, the value function weight vector associated
with the newly learned task, along with the weight vec-
tors associated with the SOM, is presented as input vec-
tors to Algorithm 1. For instance, if the weight vectors
of the SOM are given by wg = {Wy,, ... Wy, ... Wy, },
then the subsequent input vectors w, to Algorithm 1
are wy = {wsUwr}. By presenting the inputs to the
GSOM algorithm in this manner, the resulting SOM
approximates and integrates previously learned task
knowledge and the knowledge of newly learned tasks.
Figure 4(a) shows a sample 8 X 8 SOM, which was
learned by the agent after 1000 Q-learning episodes.
Similarly, Figure 4(b) shows a 5X5 SOM which
resulted from a tabular approach to the same naviga-
tion problem. This demonstrates the flexibility of this
approach with respect to different representation
schemes. Although these SOMs store more value
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functions than the number of tasks, as demonstrated
later on (using Figure 9), the representation becomes
more storage efficient when a large number of tasks are
involved. The color of each SOM element in Figure 4
corresponds to the task in Figure 3 that has the maxi-
mum cosine similarity between its value function
weights and the weight vector associated with that
SOM element. Furthermore, the brightness of this
color is in proportion to the value of this cosine similar-
ity. In Figure 4, these values are overlaid and displayed
on top of each SOM element. The distribution of the
different colors and associated cosine similarity values
of each SOM clement in Figure 4 suggests that the
SOM stores knowledge of a variety of related tasks.
Specifically, Figure 4 shows that the nodes correspond-
ing to tasks that have very different goal locations
(measured perhaps by how far apart they are in physi-
cal space) form separate, distinct clusters (e.g. the blue
and green clusters in the SOM, representing nodes
related to tasks 2 and 3). In contrast, nodes corre-
sponding to tasks whose goal locations are close to
each other (such as tasks 1, 4, and 5) are generally
never too far away from each other in the map (as
inferred from the locations of the red, cyan, and pink
clusters). This shows that the allocation of the SOM
nodes is done as per the characteristics of the tasks and
not merely according to the number of tasks. The latter
approach would result in significant redundancies, for
example, if the agent encounters multiple tasks which
are very similar to each other, or the same task multiple
times. Such redundancies are avoided by the proposed
SOM-based approach.

Although the SOM knowledge base does not neces-
sarily retain the exact value function weights of previ-
ously learned tasks, it can be used to efficiently guide
the exploration of an agent while learning a new task.
This is especially true if the new task is closely related
to one of the previously learned tasks. Figure 5 depicts
this phenomenon for task 5 (¢ =0.3), with higher
returns being achieved at a significantly faster rate
using the SOM-based exploration strategy described in
section 3.2. In both exploration strategies (SOM-based
and e¢—greedy), exploratory actions are executed with
the same probability, but the SOM-based exploration
achieves a better performance, as knowledge of related
tasks (in this case, tasks 1 and 4) from previous experi-
ences allows the agent to take more informed explora-
tory actions.

This is also supported by the results in Figure 6(a),
which shows the evolution of the cosine similarity
between the value function weights of the target task
and the most similar weight vector in the SOM as the
agent interacts with its environment. With a greater
number of agent—environment interactions, the esti-
mates of the agent’s target task weight vector improve,
and it receives more relevant advice from the SOM. In
addition to Figure 6(a), in Figure 6(b), we observe that
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Figure 5. A sample plot of the nature of the learning
improvements brought about by SOM-based exploration (for
Gr = 0.3). The solid lines represent the mean of the average
return for 10 Q-learning runs of 1000 episodes each, whereas
the shaded region marks the standard deviation associated with
this data.

the index of the most similar SOM node fluctuates sig-
nificantly during the initial stages of learning, when the
estimate of the target value function weights is poor.
As vastly different indices generally correspond to dif-
ferent regions in the SOM (and hence value functions
that are very different in nature), this implies that the
initial exploratory advice provided by the SOM is
mostly random. As the learning progresses, the target
value function estimate improves and stabilizes, and
the most similar SOM node consistently occurs around
a particular topological neighborhood of the SOM
map. This is revealed by the lack of drastic fluctuations
in the latter portions of Figure 6(b). These trends sug-
gest that the quality of advice derived from the SOM
improves with the number of agent—environment inter-
actions, which leads to the learning improvements seen
in Figure 5.

As observed in Figure 5, our approach does not lead
to sudden, dramatic jumpstart improvements, as the
transfer is solely based on using the SOM to take more
informed exploratory actions. Although our approach
may limit the bias that could potentially be added for
learning a target task, it ensures against drastic drops
in the learning performance. This is because each target
task is learned from scratch, and improvements are
brought about only through improved exploratory
actions, whose influence on the value functions is
subtler in comparison to the approach of directly modi-
fying the value function weight parameters.

Figure 7 shows the average return per episode for
different tasks and different values of &, using the two
exploration strategies. The values plotted are averaged
over 10 runs. The return is computed through evalua-
tion runs conducted after (as opposed to during) each
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Figure 6. (a) A representative example of the variation of the cosine similarity between a target task and its most similar source
task as the agent interacts with its environment. (b) An example of the variation of the index of the most similar SOM node as the

agent interacts with the environment.
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Figure 7. Comparison of the average returns accumulated for
different tasks in simulation using the SOM-based and ¢—greedy
exploration strategies.

episode by allowing the agent to greedily exploit the
value function weights starting from 100 randomly cho-
sen points in the environment for 100 steps. This allows
us to examine the learning improvements even for
highly exploratory strategies (e.g. when &=1). As
observed from Figure 7, SOM-based exploration con-
sistently results in higher average returns for related
tasks 4 and 5. Its performance on the unrelated tasks 2
and 3 are generally comparable to that of the e—greedy
approach. Although task 1 is related to tasks 4 and 5, it

is the first task learned by the agent. So, it cannot make
use of its previous knowledge to accelerate its learning
on this task. Hence, the transfer advantage is not
observed for task 1. However, overall, it is useful to
extract exploratory action advice from the SOM.

In order to put these described learning improve-
ments into perspective, we also compared the transfer
performance of our approach to that of the PPR algo-
rithm, which was briefly mentioned in section 2. To
perform this comparison, we provided the agent with a
set of policies (policies corresponding to tasks 1-4,
which comprised a policy library) corresponding to
learned navigation tasks in the environment described
in Figure 3 and allowed it to learn a policy for task 5.
The new task was learned using the PPR algorithm,
which made use of the policy library in order to guide
its exploration. Subsequently, this task was indepen-
dently learned again using our approach, by simply
replacing the exploration strategy in the PPR approach
with the proposed SOM-based exploration strategy.
The SOM used for this was derived from the same set
of policies in the mentioned policy library. During these
simulations, the PPR-related parameters were set as
follows: initial exploration parameter ¢ = 1, decay rate
of exploration parameter v = 0.95, initial temperature
parameter 7 = 0, and step change in temperate para-
meter AT = 0.05, as specified in Fernandez and Veloso
(2013). The Q-learning parameters were left unchanged
from the previous navigation tasks mentioned in this
section. A comparison of the learning performance for
the target task 5, averaged over 10 runs, is depicted in
Figure 8. As observed, the learning performance of the
agent is superior when it employs the SOM-based
exploration approach. This is probably due to the fact
that unlike PPR, which solely exploits the past policies,
the SOM-based approach exploits past policies as well



122 Adaptive Behavior 27(2)

» 300
«—SOM-based exploration E
—o—PPR S
o
£ 4 »
5000 Lia WAL X °

X f\.}'\ fﬁ;fw“l‘w”‘v" A . B 200
£ 1 W W oI 3
S ko AR ﬁ o
- Ra f G 5 9__)
om0 y_,
o)) c
S . @
S 2500 £

s 8 100
=
e}
»
°
o

0 Z 9 . . . .
0 200 400 600 800 1000
No. of Tasks
0 200 400 600 800 1000

Number of episodes

Figure 8. A comparison between the learning improvements
brought about by SOM-based exploration and the PPR approach
for target task 5. The solid lines represent the mean of the
average return for 10 Q-learning runs of 1000 episodes each,
whereas the shaded region marks the standard deviation
associated with this data.

as non-linear interpolations between these policies,
which happen to correspond to policies that are useful
for solving other tasks in the environment.

In addition to the learning improvements
described, the described SOM-based transfer
approach also offers advantages in terms of the scal-
ability of knowledge storage. This is depicted in
Figure 9, which shows the number of SOM nodes
needed for storing the knowledge of up to 1000 tasks,
with different values of the GSOM threshold para-
meter Gr. It is clear that as the number of learned
tasks increases, the number of SOM nodes required
per task decreases, making the SOM-based approach
more scalable with respect to knowledge storage.
However, it should be noted that for a small number
of tasks, the proposed SOM representation may
not be efficient. Such an inefficiency is observed in
Figure 4, where the number of nodes needed to store
the knowledge of tasks is much larger than the num-
ber of tasks. Hence, the storage efficiency of the pro-
posed approach becomes relevant, generally in cases
where a large number of tasks are involved.

The simulation results in this section suggest that
adopting the SOM-based exploration strategy may be
beneficial for learning a new task which is related to
previously learned tasks. Even when the new task is
unrelated (such as in the case of tasks 2 and 3),
employing such an exploration strategy does not lead
to drastic reductions in performance. In section 4.2,
we conduct knowledge storage and transfer experi-
ments similar to those described in this section, in a
real-world navigation environment using a micro-
robotics platform.

Figure 9. The number of SOM nodes used to store knowledge
for up to 1000 tasks, for different values of growth threshold Gr.

4.2. Robot experiments

In this section, the methodology described in section 3
is further validated with real-world experiments using
the EvoBot (Karimpanal et al., 2015), a mobile micro-
robotics prototyping platform. The EvoBot is a differ-
entially driven robot, and it uses wireless communica-
tion to exchange information with a central computer.
The computer receives data from the robot’s sensors,
performs computations, and transmits a command for
the robot to execute. The action set of the robot is com-
posed of five different actions: moving straight, curving
left, curving right, spinning right, and spinning left. To
sense its surrounding environment, the robot is
equipped with three infrared sensors on its front side,
each separated by an angular separation of 72° from
the other. Apart from this, the robot also has a number
of sensors for localization. An extended Kalman filter
(Anderson & Moore, 1979) combines these sensor read-
ings to maintain a good estimate of the robot’s position
in its environment.

The experiments described in this section are carried
out in an environment (approximately 1.8m X 1.8m in
size) with coordinate axes fixed as shown in Figure 10.
The walls and obstacles in the environment are colored
white in order for them to be more easily detected by
the infrared sensors of the robot. The robot’s state con-
sists of its x and y coordinates, along with its orienta-
tion (heading direction) in the environment. Three
locations in the environment (indicated by locations S1,
S2, and S3 in Figure 10) are assumed to be associated
with the feature elements of the environment feature
vector. For RL tasks in this environment, the feature
vector is composed of 803 feature elements (300 for
each of the horizontal and vertical coordinates, 200 for
the heading, and the 3 feature elements of the environ-
ment feature vector). As in section 4.1, the environment
feature vector is used for the identification of different
tasks via clustering. For an RL task of navigating to a
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Figure 10. The environment set-up and configuration, showing Target Tasks
the position of the robot’s coordinate axes, and the goal
locations of the different identified tasks (SI, S2 and S3) and Figure 1. Comparison of the average returns accumulated

target tasks (T1, T2 and T3).

goal location in the environment shown, the reward
structure is such that the robot receives a positive
reward (arbitrarily set to + 100) when it is within
10 cm of the associated goal location and a living pen-
alty (— 10) for every non-goal state. Penalties of —100
are assigned to states in which the robot is too close to
an obstacle. In order to avoid running into an obstacle,
certain “safe” actions (actions which help steer the
robot away from obstacles) are defined when any of the
robot’s infrared sensors detect an obstacle within 30 cm
of it. These actions are determined based on the infra-
red sensor readings of the robot. For instance, if the
infrared sensor on the left of the robot reports an obsta-
cle within 30 cm, the safe actions could be curving or
spinning right. In order to discourage unsafe actions,
each time the robot comes close (=< 30 cm) to an obsta-
cle (where it receives a large penalty of —100), we ensure
that non-safe actions do not result in any robot motion.
Hence, when a non-safe action is selected, the robot
remains in the undesirable state, and the value function
is updated based on the large penalties it receives in that
state. However, when safe actions are chosen, the robot
is allowed to move out of the region associated with
large penalties, and the reward it receives is relatively
better than the penalty of —100. For both safe and
unsafe actions, the value functions are updated as
usual. The difference is that for unsafe actions, the
reward is forced to be low by disallowing the robot’s
motion in the undesirable state. In this way, unsafe
actions are discouraged, and over time, the robot
becomes more likely to choose safe actions when it is
close to an obstacle.

The robot is initially allowed to explore the environ-
ment for a period of 1 h with actions chosen at random
(exploration parameter ¢ = 1) from the action set with
a frequency of approximately 3 Hz. During this explo-
ration phase, the environment feature vectors are clus-
tered in an adaptive manner, leading to the
identification of different tasks (i.e. tasks of navigating

using SOM-based exploration and ¢é—greedy exploration while
learning the target tasks T1, T2 and T3.

to points S1, S2, and S3). The knowledge of these iden-
tified tasks are used to construct the SOM knowledge
base, which is later used to learn the target tasks (tasks
corresponding to locations T1, T2, and T3, as shown in
Figure 10). The value function weights associated with
each of these identified tasks are learned in parallel
using Q-learning with linear function approximation.
The parameters used for each Q-learning task are the
same as those used in the simulations. A similar reward
structure is used for all the Q-learning tasks, with the
only difference being the locations associated with posi-
tive rewards.

Once the value function weights of the different
identified tasks are learned, they are stored in a SOM
using Algorithm 1. The robot is then assigned to
sequentially learn a series of target tasks using Q-learn-
ing with both the SOM-based and ¢—greedy explora-
tion strategies. These target tasks (T1, T2, and T3
tasks) are chosen such that their goal state is physically
close to the goal states of at least some of the source
tasks. The purpose of choosing target tasks in this
manner is so that we may evaluate the learning perfor-
mance of the robot for tasks that are related to those
already learned by the robot. The hypothesis is that in
the case of the SOM-based exploration, the robot will
be able to leverage its knowledge of related tasks to
appropriately guide its exploratory actions, leading to
the accumulation of larger returns, compared to the
case where exploratory actions are chosen at random.
For each target task, the performance of the different
exploration strategies (with ¢ = 0.7) is evaluated as the
average sum of rewards (return) accumulated over 10
runs, each of which lasts for a duration of 300 s.

Figure 11 summarizes the comparison between the
two exploration strategies. Given the relatively short
time of 300 s, the goal state need not be visited during
every run. In addition to this, the environment is set up
such that negative rewards are much more commonly
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experienced than positive ones. Owing to these factors,
the sum of rewards (return) in all the runs is negative.
However, SOM-based exploration is found to accumu-
late a higher average return as compared to the
e—greedy exploration strategy. As the robot interacts
with its environment, the estimates of its value function
weights improve. When the SOM-based exploration
strategy is employed, these improved estimates allow it
to receive more relevant suggestions for exploratory
actions (using the mechanism described in section 3.2)
from the SOM knowledge base. This accounts for the
improved performance observed in Figure 11.

5. Discussion

The simulations and experiments reported here,
although performed on a small scale, demonstrate that
using a SOM knowledge base to guide the agent’s
exploratory actions may help achieve a quicker accu-
mulation of higher returns when the target tasks are
related to the previously learned tasks. Moreover, the
nature of the transfer algorithm is such that even in the
case where the source tasks are unrelated to the target
task, the learning performance does not exhibit drastic
drops, as in the case where value functions of source
tasks are directly used to initialize or modify the value
function of a target task. Another advantage of the
proposed approach is that it can be easily applied to
different representation schemes (e.g. tabular represen-
tations, tile coding, neural networks), as long as the
same action space and representation scheme is used
for the target and source tasks. This property has been
exhibited in Figure 4, where SOMs resulting from two
different representation schemes are shown. With
regard to the storage of knowledge of learned tasks, the
SOM-based approach offers a scalable alternative to
explicitly storing the value function weights of all the
learned tasks. From a practical point of view, one may
also define upper limits to the size to which the SOM
may expand based on known memory limitations.

Despite these advantages, several issues remain to be
addressed. The most fundamental limitation of this
approach is that it is applicable only to situations where
tasks differ solely in their reward functions. This may
prohibit its use in a number of practical applications.
Moreover, the approach executes any action advice
that it is provided with. The decision to execute the
advised actions could be carried out in a more selective
manner, perhaps based on the cosine similarity between
the target task and the advising node of the SOM.

One limitation with our approach, as described, is
that since the actions are always either greedy or dic-
tated by one of the SOM nodes, every state-action pair
is not guaranteed to be visited infinitely often, and
hence, Q-learning is not guaranteed to converge.
However, this issue can simply be addressed by

allowing the agent to take random exploratory actions
with a very small probability. The final exploration
strategy would hence be ¢e—B—greedy(¢ < B), such that
with a probability of ¢, the agent takes random actions,
with a probability of B, it follows the SOM-guided
actions, and with a probability of (1 — ¢ — B), it takes
greedy actions. Although we were able to learn good
policies in our implementations, a simple modification
to the exploration strategy as mentioned above guaran-
tees the convergence of the Q-learning component of
our approach.

Apart from this, and the several other possible var-
iants to this approach, ways to automate the selection of
the threshold parameters, establishing theoretical bounds
on the learning performance and alternative approaches
to quantify the efficiency of the knowledge storage
mechanism, may be future directions for research.

6. Conclusion

We described an approach to efficiently store and reuse
the knowledge of learned tasks using SOMs. We applied
this approach to an agent in a simulated multi-task navi-
gation environment and compared its performance to
that of an ¢—greedy approach for different values of the
exploration parameter ¢. Results from the simulations
reveal that a modified exploration strategy that exploits
the knowledge of previously learned tasks improves the
agent’s learning performance on related target tasks.
Furthermore, navigation experiments were conducted
using a physical micro-robotics platform, the results of
which validated those obtained in the simulations. In
addition to being able to leverage previously learned task
knowledge for transfer, the proposed approach is also
shown to be able to store the knowledge of multiple tasks
in a scalable manner. This aspect is demonstrated empiri-
cally and is supported by some analytically derived prop-
erties. Overall, our results indicate that the proposed
approach transfers knowledge across tasks relatively
safely, while simultaneously storing relevant task knowl-
edge in a scalable manner. Such an approach could
prove to be useful for agents that operate using the RL
framework, especially for real-world applications such as
autonomous robots, where scalable knowledge storage
and sample efficiency are critical factors.
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1. This work is an extension of Karimpanal and Bouffanais
(2018), which was presented at the ALA workshop in
Stockholm, Sweden, in July 2018.
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